Figure settings
Contents
#W2D1 Tutorial 3: Multi-model ensembles
Indented block
Indented block
Week 2, Day 1, Future Climate: The Physical Basis
Content creators: Brodie Pearson (Day Lead), Julius Busecke (Tutorial co-lead), Tom Nicholas (Tutorial co-lead)
Content reviewers: Jenna Pearson, Ohad Zivan
Content editors: TBD
Production editors: TBD
Our 2023 Sponsors: TBD
#Tutorial Objectives
Today’s tutorials demonstrate how to work with data from Earth System Models (ESMs) simulations conducted for the recent Climate Model Intercomparison Project (CMIP6)
By the end of today’s tutorials you will be able to:
Manipulate raw data from multiple CMIP6 models
Evaluate the spread of future projections from several CMIP6 models
Synthesize climate data from observations and models
#Setup
# #Imports
# !pip install condacolab &> /dev/null
# import condacolab
# condacolab.install()
# # Install all packages in one call (+ use mamba instead of conda)
# # hopefully this improves speed
# !mamba install xarray-datatree intake-esm gcsfs xmip aiohttp nc-time-axis cf_xarray xarrayutils &> /dev/null
import time
tic = time.time()
import intake
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
from xmip.preprocessing import combined_preprocessing
from xarrayutils.plotting import shaded_line_plot
from datatree import DataTree
from xmip.postprocessing import _parse_metric
Figure settings#
# @title Figure settings
import ipywidgets as widgets # interactive display
%config InlineBackend.figure_format = 'retina'
plt.style.use(
"https://raw.githubusercontent.com/ClimateMatchAcademy/course-content/main/cma.mplstyle"
)
# model_colors = {k:f"C{ki}" for ki, k in enumerate(source_ids)}
Plotting functions#
# @title Plotting functions
# You may have functions that plot results that aren't
# particularly interesting. You can add these here to hide them.
def plotting_z(z):
"""This function multiplies every element in an array by a provided value
Args:
z (ndarray): neural activity over time, shape (T, ) where T is number of timesteps
"""
fig, ax = plt.subplots()
ax.plot(z)
ax.set(xlabel="Time (s)", ylabel="Z", title="Neural activity over time")
Helper functions#
# @title Helper functions
# If any helper functions you want to hide for clarity (that has been seen before
# or is simple/uniformative), add here
# If helper code depends on libraries that aren't used elsewhere,
# import those libaries here, rather than in the main import cell
def global_mean(ds: xr.Dataset) -> xr.Dataset:
"""Global average, weighted by the cell area"""
return ds.weighted(ds.areacello.fillna(0)).mean(["x", "y"], keep_attrs=True)
Tutorial 3: Multi-model ensembles#
In the previous section, you compared how a single CMIP6 model simulated past temperature, and how it projected temperature would change under a low-emissions scenario and a high-emissions scenario.
Now we will start to compare data from multiple CMIP6 models. For this comparison, we will focus on just the historical simulation and the low-emissions projection (for now).
Complete the following code to plot 1850-2100 timeseries of global mean sea surface temperature for the 5 CMIP6 models that were loaded earlier (using the low-emissions future projection).
Video 1: Video 1 Name#
# @title Video 1: Video 1 Name
# Tech team will add code to format and display the video
##Section 3.1: Load CMIP6 SST data again adn recreate the plot from Tutorial 2
col = intake.open_esm_datastore(
"https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
) # open an intake catalog containing the Pangeo CMIP cloud data
# pick our five example models
# There are many more to test out! Try executing `col.df['source_id'].unique()` to get a list of all available models
source_ids = ["IPSL-CM6A-LR", "GFDL-ESM4", "ACCESS-CM2", "MPI-ESM1-2-LR", "TaiESM1"]
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Cell In[7], line 1
----> 1 col = intake.open_esm_datastore(
2 "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
3 ) # open an intake catalog containing the Pangeo CMIP cloud data
5 # pick our five example models
6 # There are many more to test out! Try executing `col.df['source_id'].unique()` to get a list of all available models
7 source_ids = ["IPSL-CM6A-LR", "GFDL-ESM4", "ACCESS-CM2", "MPI-ESM1-2-LR", "TaiESM1"]
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/core.py:107, in esm_datastore.__init__(self, obj, progressbar, sep, registry, read_csv_kwargs, columns_with_iterables, storage_options, **intake_kwargs)
105 self.esmcat = ESMCatalogModel.from_dict(obj)
106 else:
--> 107 self.esmcat = ESMCatalogModel.load(
108 obj, storage_options=self.storage_options, read_csv_kwargs=read_csv_kwargs
109 )
111 self.derivedcat = registry or default_registry
112 self._entries = {}
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/cat.py:264, in ESMCatalogModel.load(cls, json_file, storage_options, read_csv_kwargs)
262 csv_path = f'{os.path.dirname(_mapper.root)}/{cat.catalog_file}'
263 cat.catalog_file = csv_path
--> 264 df = pd.read_csv(
265 cat.catalog_file,
266 storage_options=storage_options,
267 **read_csv_kwargs,
268 )
269 else:
270 df = pd.DataFrame(cat.catalog_dict)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:912, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
899 kwds_defaults = _refine_defaults_read(
900 dialect,
901 delimiter,
(...)
908 dtype_backend=dtype_backend,
909 )
910 kwds.update(kwds_defaults)
--> 912 return _read(filepath_or_buffer, kwds)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:577, in _read(filepath_or_buffer, kwds)
574 _validate_names(kwds.get("names", None))
576 # Create the parser.
--> 577 parser = TextFileReader(filepath_or_buffer, **kwds)
579 if chunksize or iterator:
580 return parser
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1407, in TextFileReader.__init__(self, f, engine, **kwds)
1404 self.options["has_index_names"] = kwds["has_index_names"]
1406 self.handles: IOHandles | None = None
-> 1407 self._engine = self._make_engine(f, self.engine)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1661, in TextFileReader._make_engine(self, f, engine)
1659 if "b" not in mode:
1660 mode += "b"
-> 1661 self.handles = get_handle(
1662 f,
1663 mode,
1664 encoding=self.options.get("encoding", None),
1665 compression=self.options.get("compression", None),
1666 memory_map=self.options.get("memory_map", False),
1667 is_text=is_text,
1668 errors=self.options.get("encoding_errors", "strict"),
1669 storage_options=self.options.get("storage_options", None),
1670 )
1671 assert self.handles is not None
1672 f = self.handles.handle
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:716, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
713 codecs.lookup_error(errors)
715 # open URLs
--> 716 ioargs = _get_filepath_or_buffer(
717 path_or_buf,
718 encoding=encoding,
719 compression=compression,
720 mode=mode,
721 storage_options=storage_options,
722 )
724 handle = ioargs.filepath_or_buffer
725 handles: list[BaseBuffer]
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:373, in _get_filepath_or_buffer(filepath_or_buffer, encoding, compression, mode, storage_options)
370 if content_encoding == "gzip":
371 # Override compression based on Content-Encoding header
372 compression = {"method": "gzip"}
--> 373 reader = BytesIO(req.read())
374 return IOArgs(
375 filepath_or_buffer=reader,
376 encoding=encoding,
(...)
379 mode=fsspec_mode,
380 )
382 if is_fsspec_url(filepath_or_buffer):
File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:482, in HTTPResponse.read(self, amt)
480 else:
481 try:
--> 482 s = self._safe_read(self.length)
483 except IncompleteRead:
484 self._close_conn()
File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:631, in HTTPResponse._safe_read(self, amt)
624 def _safe_read(self, amt):
625 """Read the number of bytes requested.
626
627 This function should be used when <amt> bytes "should" be present for
628 reading. If the bytes are truly not available (due to EOF), then the
629 IncompleteRead exception can be used to detect the problem.
630 """
--> 631 data = self.fp.read(amt)
632 if len(data) < amt:
633 raise IncompleteRead(data, amt-len(data))
File ~/miniconda3/envs/climatematch/lib/python3.10/socket.py:705, in SocketIO.readinto(self, b)
703 while True:
704 try:
--> 705 return self._sock.recv_into(b)
706 except timeout:
707 self._timeout_occurred = True
File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1274, in SSLSocket.recv_into(self, buffer, nbytes, flags)
1270 if flags != 0:
1271 raise ValueError(
1272 "non-zero flags not allowed in calls to recv_into() on %s" %
1273 self.__class__)
-> 1274 return self.read(nbytes, buffer)
1275 else:
1276 return super().recv_into(buffer, nbytes, flags)
File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1130, in SSLSocket.read(self, len, buffer)
1128 try:
1129 if buffer is not None:
-> 1130 return self._sslobj.read(len, buffer)
1131 else:
1132 return self._sslobj.read(len)
KeyboardInterrupt:
If the following cell crashes, run the cell a second time#
# from the full `col` object, create a subset using facet search
cat = col.search(
source_id=source_ids,
variable_id="tos",
member_id="r1i1p1f1",
table_id="Omon",
grid_label="gn",
experiment_id=["historical", "ssp126", "ssp585"],
require_all_on=[
"source_id"
], # make sure that we only get models which have all of the above experiments
)
# convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
kwargs = dict(
preprocess=combined_preprocessing, # apply xMIP fixes to each dataset
xarray_open_kwargs=dict(
use_cftime=True
), # ensure all datasets use the same time index
storage_options={
"token": "anon"
}, # anonymous/public authentication to google cloud storage
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat.esmcat.aggregation_control.groupby_attrs = ["source_id", "experiment_id"]
dt = cat.to_datatree(**kwargs)
cat_area = col.search(
source_id=source_ids,
variable_id="areacello", # for the coding exercise, ellipses will go after the equals on this line
member_id="r1i1p1f1",
table_id="Ofx", # for the coding exercise, ellipses will go after the equals on this line
grid_label="gn",
experiment_id=[
"historical"
], # for the coding exercise, ellipses will go after the equals on this line
require_all_on=["source_id"],
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_area.esmcat.aggregation_control.groupby_attrs = ["source_id", "experiment_id"]
dt_area = cat_area.to_datatree(**kwargs)
dt_with_area = DataTree()
for model, subtree in dt.items():
metric = dt_area[model]["historical"].ds["areacello"]
dt_with_area[model] = subtree.map_over_subtree(_parse_metric, metric)
%matplotlib inline
# average every dataset in the tree globally
dt_gm = dt_with_area.map_over_subtree(global_mean)
for experiment in ["historical", "ssp126", "ssp585"]:
da = dt_gm["TaiESM1"][experiment].ds.tos
da.plot(label=experiment)
plt.title("Global Mean SST from TaiESM1")
plt.ylabel("Global Mean SST [$^\circ$C]")
plt.xlabel("Year")
plt.legend()
plt.show()
###Coding Exercise 3.1: Combine the past data and future data, and remove seasonal oscillations
The historical and projected data are separate time series. Can you complete the xr.concat function to combine the historical and projected data into a single continuous time series for each model?
The previous timeseries oscillated very rapidly due to Earth’s seasonal cycles. Can you complete the xarray coarsen function so that it smooths the monthly data with a one-year running mean? This will make it easier to distinguish the medium- to long-term changes in sea surface temperature
#################################################
## TODO for students: details of what they should do ##
# Fill out function and remove
raise NotImplementedError("Student exercise: Combine historical & future (ssp126) data from the same model and smooth with a 1-year running mean")
#################################################
def plot_historical_ssp126_combined(dt):
for model in dt.keys():
datasets = []
for experiment in ['historical', 'ssp126']:
datasets.append(dt[model][experiment].ds.tos)
# For each of the models, concatenate its historical and future data
da_combined = xr.concat(...)
# plot annual averages
da_combined.coarsen(...).mean().plot(label=model)
plot_historical_ssp126_combined(dt_gm)
plt.title('Global Mean SST from five CMIP6 models (annually smoothed)')
plt.ylabel('Global Mean SST [$^\circ$C]')
plt.xlabel('Year')
plt.legend()
# to_remove solution
def plot_historical_ssp126_combined(dt):
for model in dt.keys():
datasets = []
for experiment in ["historical", "ssp126"]:
datasets.append(dt[model][experiment].ds.tos)
# For each of the models, concatenate its historical and future data
da_combined = xr.concat(datasets, dim="time")
# plot annual averages
da_combined.coarsen(time=12).mean().plot(label=model)
with plt.xkcd():
plot_historical_ssp126_combined(dt_gm)
plt.title("Global Mean SST from five CMIP6 models (annually smoothed)")
plt.ylabel("Global Mean SST [$^\circ$C]")
plt.xlabel("Year")
plt.legend()
Post-figure questions#
Does anything about this plot surprise you?
Why do you think the global mean temperature varies so much between models?*
*If you get stuck here, use the lectures from earlier today and from the Climate Modelling day for inspiration
###Coding Exercise 3.2: Calculate the temperature anomaly
As you just saw, the global mean temperature varies between climate models. This is not surprising given the slight differences in physics, numerics, and discretization between each model.
When we are looking at future projections, we care about how the model’s change relative to their equilibrium/previous state. To do this, we typically subtract a historical reference period from the timeseries, which create a new timeseries of the temperature anomaly relative to that period.
Modify the following code to recreate the previous multi-model figure, but now instead plot the global mean sea surface temperature (GMSST) anomaly relative the 1950-1980 period (i.e., subtract the 1950-1980 mean GMSST of each model from that model’s timeseries)
#################################################
## TODO for students: details of what they should do ##
# Fill out function and remove
raise NotImplementedError("Student exercise: Adapt the previous figure to plot the anomaly of global mean sea surface temperature relative to the 1950-1980 period")
#################################################
# Calculate anomaly to reference period
def datatree_anomaly(dt):
dt_out = DataTree()
for model, subtree in dt.items():
# Find the temporal average over the desired referene period
ref = ...
dt_out[model] = subtree - ref
return dt_out
dt_gm_anomaly = datatree_anomaly(dt_gm)
plot_historical_ssp126_combined(dt_gm_anomaly)
plt.title('Global Mean SST Anomaly from five CMIP6 models (base period: 1950 to 1980)')
plt.ylabel('Global Mean SST Anomaly [$^\circ$C]')
plt.xlabel('Year')
plt.legend()
# to_remove solution
# Calculate anomaly to reference period
def datatree_anomaly(dt):
dt_out = DataTree()
for model, subtree in dt.items():
# Find the temporal average over the desired referene period
ref = dt[model]["historical"].ds.sel(time=slice("1950", "1980")).mean()
dt_out[model] = subtree - ref
return dt_out
dt_gm_anomaly = datatree_anomaly(dt_gm)
with plt.xkcd():
plot_historical_ssp126_combined(dt_gm_anomaly)
plt.title(
"Global Mean SST Anomaly from five CMIP6 models (base period: 1950 to 1980)"
)
plt.ylabel("Global Mean SST Anomaly [$^\circ$C]")
plt.xlabel("Year")
plt.legend()
Post-figure question#
How does this figure compare to the previous one where the reference period was not subtracted?