#W2D1 Tutorial 2: Time series, global averages, and scenario comparison

Indented block

Indented block

Week 2, Day 1, Future Climate: The Physical Basis

Content creators: Brodie Pearson (Day Lead), Julius Busecke (Tutorial co-lead), Tom Nicholas (Tutorial co-lead)

Content reviewers: Jenna Pearson, Ohad Zivan

Content editors: TBD

Production editors: TBD

Our 2023 Sponsors: TBD

#Tutorial Objectives

Today’s tutorials demonstrate how to work with data from Earth System Models (ESMs) simulations conducted for the recent Climate Model Intercomparison Project (CMIP6)

By the end of today’s tutorials you will be able to:

  • Manipulate raw data from multiple CMIP6 models

  • Evaluate the spread of future projections from several CMIP6 models

  • Synthesize climate data from observations and models

#Setup

# #Imports

# !pip install condacolab &> /dev/null
# import condacolab
# condacolab.install()

# # Install all packages in one call (+ use mamba instead of conda)
# # hopefully this improves speed
# !mamba install xarray-datatree intake-esm gcsfs xmip aiohttp nc-time-axis cf_xarray xarrayutils &> /dev/null
import time

tic = time.time()

import intake
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr

from xmip.preprocessing import combined_preprocessing
from xarrayutils.plotting import shaded_line_plot

from datatree import DataTree
from xmip.postprocessing import _parse_metric

Figure settings#

# @title Figure settings
import ipywidgets as widgets  # interactive display

%config InlineBackend.figure_format = 'retina'
plt.style.use(
    "https://raw.githubusercontent.com/ClimateMatchAcademy/course-content/main/cma.mplstyle"
)
# model_colors = {k:f"C{ki}" for ki, k in enumerate(source_ids)}

Plotting functions#

# @title Plotting functions

# You may have functions that plot results that aren't
# particularly interesting. You can add these here to hide them.


def plotting_z(z):
    """This function multiplies every element in an array by a provided value

    Args:
      z (ndarray): neural activity over time, shape (T, ) where T is number of timesteps

    """

    fig, ax = plt.subplots()

    ax.plot(z)
    ax.set(xlabel="Time (s)", ylabel="Z", title="Neural activity over time")

Helper functions#

# @title Helper functions

# If any helper functions you want to hide for clarity (that has been seen before
# or is simple/uniformative), add here
# If helper code depends on libraries that aren't used elsewhere,
# import those libaries here, rather than in the main import cell


def global_mean(ds: xr.Dataset) -> xr.Dataset:
    """Global average, weighted by the cell area"""
    return ds.weighted(ds.areacello.fillna(0)).mean(["x", "y"], keep_attrs=True)


# Calculate anomaly to reference period
def datatree_anomaly(dt):
    dt_out = DataTree()
    for model, subtree in dt.items():
        # for the coding exercise, ellipses will go after sel on the following line
        ref = dt[model]["historical"].ds.sel(time=slice("1950", "1980")).mean()
        dt_out[model] = subtree - ref
    return dt_out


def plot_historical_ssp126_combined(dt):
    for model in dt.keys():
        datasets = []
        for experiment in ["historical", "ssp126"]:
            datasets.append(dt[model][experiment].ds.tos)

        da_combined = xr.concat(datasets, dim="time")

Video 1: Video 1 Name#

# @title Video 1: Video 1 Name
# Tech team will add code to format and display the video

Tutorial 5: Internal climate variability & single-model ensembles#

One of the CMIP6 models we are using in today’s tutorials, MPI-ESM1-2-LR is part of single-model ensemble, where its modelling center carried out multiple simulations from that model for each CMIP6 experiment.

Let’s take advantage of this to quantify the internal variability of this model’s simulated climate, and compare the uncertainty due to this variability to the multi-model uncertainty we diagnosed in the previous tutorial.

###Coding Exercise 5.1: Load and plot timeseries of 5 simulation single-model ensemble for the historical period and the SSP1-2.6 projection

Complete the following code to:

  1. Load 5 different realizations of the MPI-ESM1-2-LR experiments(r1i1p1f1 through r5i1p1f1). This means they were each initialized using a different time-snapshot of the base simulation.

  2. Plot the historical and SSP1-2.6 experiment data for each realization, using a distinct color for each realization, but keeping that color the same across the historical and future period for a given realization.

If the following cell crashes, run the cell a second time#

#################################################
## TODO for students: details of what they should do ##
# Fill out function and remove
raise NotImplementedError("Student exercise: Load single-model ensemble datasets and plot hisotorical/ssp126 timeseries for each ensemble member")
#################################################
%matplotlib inline

col = intake.open_esm_datastore("https://storage.googleapis.com/cmip6/pangeo-cmip6.json") # open an intake catalog containing the Pangeo CMIP cloud data

cat_ensemble = col.search(
    source_id=['MPI-ESM1-2-LR'],
    variable_id='tos',
    table_id='Omon',
    # Select the 5 ensemble members described above
    member_id=...,
    grid_label='gn',
    experiment_id = ['historical', 'ssp126', 'ssp585'],
    require_all_on = ['source_id', 'member_id']
)

# convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
kwargs = dict(
    preprocess=combined_preprocessing, #apply xMIP fixes to each dataset
    xarray_open_kwargs=dict(use_cftime=True), #ensure all datasets use the same time index
    storage_options={'token':'anon'} #anonymous/public authentication to google cloud storage
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_ensemble.esmcat.aggregation_control.groupby_attrs = ['source_id', 'experiment_id']
dt_ensemble = cat_ensemble.to_datatree(**kwargs)

# add the area (we can reuse the area from before, since for a given model the horizontal are does not vary between members)
dt_ensemble_with_area = DataTree()
for model,subtree in dt_ensemble.items():
    metric = dt_area['MPI-ESM1-2-LR']['historical'].ds['areacello'].squeeze()
    dt_ensemble_with_area[model] = subtree.map_over_subtree(_parse_metric,metric)

# global average
# average every dataset in the tree globally
dt_ensemble_gm = dt_ensemble_with_area.map_over_subtree(global_mean)

# calculate anomaly
dt_ensemble_gm_anomaly = datatree_anomaly(dt_ensemble_gm)

def plot_historical_ssp126_ensemble_combined(dt):
    for model in dt.keys():
        datasets = []
        for experiment in ['historical', 'ssp126']:
            datasets.append(dt[model][experiment].ds.tos)

        # Concatenate the historical and ssp126 timeseries for each ensemble member
        da_combined = ...
        # plot annual averages
        da_combined.coarsen(time=12).mean().plot(hue='member_id')

plt.figure()
plot_historical_ssp126_ensemble_combined(dt_ensemble_gm_anomaly)

plt.title('Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble')
plt.ylabel('Global Mean SST Anomaly [$^\circ$C]')
plt.xlabel('Year')
plt.legend()

# to_remove solution
%matplotlib inline

col = intake.open_esm_datastore(
    "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
)  # open an intake catalog containing the Pangeo CMIP cloud data

cat_ensemble = col.search(
    source_id=["MPI-ESM1-2-LR"],
    variable_id="tos",
    table_id="Omon",
    # Select the 5 ensemble members described above
    member_id=["r1i1p1f1", "r2i1p1f1", "r3i1p1f1", "r4i1p1f1", "r5i1p1f1"],
    grid_label="gn",
    experiment_id=["historical", "ssp126", "ssp585"],
    require_all_on=["source_id", "member_id"],
)

# convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
kwargs = dict(
    preprocess=combined_preprocessing,  # apply xMIP fixes to each dataset
    xarray_open_kwargs=dict(
        use_cftime=True
    ),  # ensure all datasets use the same time index
    storage_options={
        "token": "anon"
    },  # anonymous/public authentication to google cloud storage
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_ensemble.esmcat.aggregation_control.groupby_attrs = ["source_id", "experiment_id"]
dt_ensemble = cat_ensemble.to_datatree(**kwargs)

cat_area = col.search(
    source_id=["MPI-ESM1-2-LR"],
    variable_id="areacello",  # for the coding exercise, ellipses will go after the equals on this line
    member_id="r1i1p1f1",
    table_id="Ofx",  # for the coding exercise, ellipses will go after the equals on this line
    grid_label="gn",
    experiment_id=[
        "historical"
    ],  # for the coding exercise, ellipses will go after the equals on this line
    require_all_on=["source_id"],
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_area.esmcat.aggregation_control.groupby_attrs = ["source_id", "experiment_id"]
dt_area = cat_area.to_datatree(**kwargs)

# add the area (we can reuse the area from before, since for a given model the horizontal are does not vary between members)
dt_ensemble_with_area = DataTree()
for model, subtree in dt_ensemble.items():
    metric = dt_area["MPI-ESM1-2-LR"]["historical"].ds["areacello"].squeeze()
    dt_ensemble_with_area[model] = subtree.map_over_subtree(_parse_metric, metric)

# global average
# average every dataset in the tree globally
dt_ensemble_gm = dt_ensemble_with_area.map_over_subtree(global_mean)

# calculate anomaly
dt_ensemble_gm_anomaly = datatree_anomaly(dt_ensemble_gm)


def plot_historical_ssp126_ensemble_combined(dt):
    for model in dt.keys():
        datasets = []
        for experiment in ["historical", "ssp126"]:
            datasets.append(dt[model][experiment].ds.tos)

        # Concatenate the historical and ssp126 timeseries for each ensemble member
        da_combined = xr.concat(datasets, dim="time")
        # plot annual averages
        da_combined.coarsen(time=12).mean().plot(hue="member_id")


with plt.xkcd():
    plt.figure()
    plot_historical_ssp126_ensemble_combined(dt_ensemble_gm_anomaly)

    plt.title(
        "Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble"
    )
    plt.ylabel("Global Mean SST Anomaly [$^\circ$C]")
    plt.xlabel("Year")
    plt.legend()
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
Cell In[7], line 4
      1 # to_remove solution
      2 get_ipython().run_line_magic('matplotlib', 'inline')
----> 4 col = intake.open_esm_datastore(
      5     "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
      6 )  # open an intake catalog containing the Pangeo CMIP cloud data
      8 cat_ensemble = col.search(
      9     source_id=["MPI-ESM1-2-LR"],
     10     variable_id="tos",
   (...)
     16     require_all_on=["source_id", "member_id"],
     17 )
     19 # convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/core.py:107, in esm_datastore.__init__(self, obj, progressbar, sep, registry, read_csv_kwargs, columns_with_iterables, storage_options, **intake_kwargs)
    105     self.esmcat = ESMCatalogModel.from_dict(obj)
    106 else:
--> 107     self.esmcat = ESMCatalogModel.load(
    108         obj, storage_options=self.storage_options, read_csv_kwargs=read_csv_kwargs
    109     )
    111 self.derivedcat = registry or default_registry
    112 self._entries = {}

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/cat.py:264, in ESMCatalogModel.load(cls, json_file, storage_options, read_csv_kwargs)
    262         csv_path = f'{os.path.dirname(_mapper.root)}/{cat.catalog_file}'
    263     cat.catalog_file = csv_path
--> 264     df = pd.read_csv(
    265         cat.catalog_file,
    266         storage_options=storage_options,
    267         **read_csv_kwargs,
    268     )
    269 else:
    270     df = pd.DataFrame(cat.catalog_dict)

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:912, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
    899 kwds_defaults = _refine_defaults_read(
    900     dialect,
    901     delimiter,
   (...)
    908     dtype_backend=dtype_backend,
    909 )
    910 kwds.update(kwds_defaults)
--> 912 return _read(filepath_or_buffer, kwds)

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:577, in _read(filepath_or_buffer, kwds)
    574 _validate_names(kwds.get("names", None))
    576 # Create the parser.
--> 577 parser = TextFileReader(filepath_or_buffer, **kwds)
    579 if chunksize or iterator:
    580     return parser

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1407, in TextFileReader.__init__(self, f, engine, **kwds)
   1404     self.options["has_index_names"] = kwds["has_index_names"]
   1406 self.handles: IOHandles | None = None
-> 1407 self._engine = self._make_engine(f, self.engine)

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1661, in TextFileReader._make_engine(self, f, engine)
   1659     if "b" not in mode:
   1660         mode += "b"
-> 1661 self.handles = get_handle(
   1662     f,
   1663     mode,
   1664     encoding=self.options.get("encoding", None),
   1665     compression=self.options.get("compression", None),
   1666     memory_map=self.options.get("memory_map", False),
   1667     is_text=is_text,
   1668     errors=self.options.get("encoding_errors", "strict"),
   1669     storage_options=self.options.get("storage_options", None),
   1670 )
   1671 assert self.handles is not None
   1672 f = self.handles.handle

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:716, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
    713     codecs.lookup_error(errors)
    715 # open URLs
--> 716 ioargs = _get_filepath_or_buffer(
    717     path_or_buf,
    718     encoding=encoding,
    719     compression=compression,
    720     mode=mode,
    721     storage_options=storage_options,
    722 )
    724 handle = ioargs.filepath_or_buffer
    725 handles: list[BaseBuffer]

File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:373, in _get_filepath_or_buffer(filepath_or_buffer, encoding, compression, mode, storage_options)
    370         if content_encoding == "gzip":
    371             # Override compression based on Content-Encoding header
    372             compression = {"method": "gzip"}
--> 373         reader = BytesIO(req.read())
    374     return IOArgs(
    375         filepath_or_buffer=reader,
    376         encoding=encoding,
   (...)
    379         mode=fsspec_mode,
    380     )
    382 if is_fsspec_url(filepath_or_buffer):

File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:482, in HTTPResponse.read(self, amt)
    480 else:
    481     try:
--> 482         s = self._safe_read(self.length)
    483     except IncompleteRead:
    484         self._close_conn()

File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:631, in HTTPResponse._safe_read(self, amt)
    624 def _safe_read(self, amt):
    625     """Read the number of bytes requested.
    626 
    627     This function should be used when <amt> bytes "should" be present for
    628     reading. If the bytes are truly not available (due to EOF), then the
    629     IncompleteRead exception can be used to detect the problem.
    630     """
--> 631     data = self.fp.read(amt)
    632     if len(data) < amt:
    633         raise IncompleteRead(data, amt-len(data))

File ~/miniconda3/envs/climatematch/lib/python3.10/socket.py:705, in SocketIO.readinto(self, b)
    703 while True:
    704     try:
--> 705         return self._sock.recv_into(b)
    706     except timeout:
    707         self._timeout_occurred = True

File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1274, in SSLSocket.recv_into(self, buffer, nbytes, flags)
   1270     if flags != 0:
   1271         raise ValueError(
   1272           "non-zero flags not allowed in calls to recv_into() on %s" %
   1273           self.__class__)
-> 1274     return self.read(nbytes, buffer)
   1275 else:
   1276     return super().recv_into(buffer, nbytes, flags)

File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1130, in SSLSocket.read(self, len, buffer)
   1128 try:
   1129     if buffer is not None:
-> 1130         return self._sslobj.read(len, buffer)
   1131     else:
   1132         return self._sslobj.read(len)

KeyboardInterrupt: 

###Coding Exercise 5.2: Create a single-model ensemble data with IPCC uncertainty bands

Complete the following code to:

  1. Repeat the final figure of the last tutorial, except now display means and uncertainty bands of the single-model ensemble that you just loaded, rather than the multi-model ensemble analyzed in the previous tutorial

#################################################
## TODO for students: details of what they should do ##
# Fill out function and remove
raise NotImplementedError("Student exercise: Repeat the prevous figure but now showing uncertainty bands rather than indivudal timeseries")
#################################################

for experiment, color in zip(['historical', 'ssp126', 'ssp585'], ['C0', 'C1', 'C2']):
    da = dt_ensemble_gm_anomaly['MPI-ESM1-2-LR'][experiment].ds.tos.coarsen(time=12).mean().load()

    # Shading representing spread between members
    x = da.time.data
    # Diagnose the lower range of the likely bounds
    da_lower = ...
    # Diagnose the upper range of the likely bounds
    da_upper = ...
    plt.fill_between(x, da_lower, da_upper,  alpha=0.5, color=color)

    # Calculate the mean across ensemble members
    da.mean(...).plot(color=color, label=experiment,)
plt.title('Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble')
plt.ylabel('Global Mean SST Anomaly [$^\circ$C]')
plt.xlabel('Year')
plt.legend()

# to_remove solution

with plt.xkcd():
    for experiment, color in zip(
        ["historical", "ssp126", "ssp585"], ["C0", "C1", "C2"]
    ):
        da = (
            dt_ensemble_gm_anomaly["MPI-ESM1-2-LR"][experiment]
            .ds.tos.coarsen(time=12)
            .mean()
            .load()
        )

        # Shading representing spread between members
        x = da.time.data
        # Diagnose the lower range of the likely bounds
        da_lower = da.squeeze().quantile(0.17, dim="member_id")
        # Diagnose the upper range of the likely bounds
        da_upper = da.squeeze().quantile(0.83, dim="member_id")
        plt.fill_between(x, da_lower, da_upper, alpha=0.5, color=color)

        # Calculate the mean across ensemble members
        da.mean("member_id").plot(
            color=color,
            label=experiment,
        )
    plt.title(
        "Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble"
    )
    plt.ylabel("Global Mean SST Anomaly [$^\circ$C]")
    plt.xlabel("Year")
    plt.legend()

Post-figure questions#

  1. Is there anything in this figure that is interesting to you?

  2. How does this figure compare to the multi-model ensemble figure from the previous tutorial? Can you interpret differences using the science we have discussed today?