Figure settings
Contents
#W2D1 Tutorial 2: Time series, global averages, and scenario comparison
Indented block
Indented block
Week 2, Day 1, Future Climate: The Physical Basis
Content creators: Brodie Pearson (Day Lead), Julius Busecke (Tutorial co-lead), Tom Nicholas (Tutorial co-lead)
Content reviewers: Jenna Pearson, Ohad Zivan
Content editors: TBD
Production editors: TBD
Our 2023 Sponsors: TBD
#Tutorial Objectives
Today’s tutorials demonstrate how to work with data from Earth System Models (ESMs) simulations conducted for the recent Climate Model Intercomparison Project (CMIP6)
By the end of today’s tutorials you will be able to:
Manipulate raw data from multiple CMIP6 models
Evaluate the spread of future projections from several CMIP6 models
Synthesize climate data from observations and models
#Setup
# #Imports
# !pip install condacolab &> /dev/null
# import condacolab
# condacolab.install()
# # Install all packages in one call (+ use mamba instead of conda)
# # hopefully this improves speed
# !mamba install xarray-datatree intake-esm gcsfs xmip aiohttp nc-time-axis cf_xarray xarrayutils &> /dev/null
import time
tic = time.time()
import intake
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
from xmip.preprocessing import combined_preprocessing
from xarrayutils.plotting import shaded_line_plot
from datatree import DataTree
from xmip.postprocessing import _parse_metric
Figure settings#
# @title Figure settings
import ipywidgets as widgets # interactive display
%config InlineBackend.figure_format = 'retina'
plt.style.use(
"https://raw.githubusercontent.com/ClimateMatchAcademy/course-content/main/cma.mplstyle"
)
# model_colors = {k:f"C{ki}" for ki, k in enumerate(source_ids)}
Plotting functions#
# @title Plotting functions
# You may have functions that plot results that aren't
# particularly interesting. You can add these here to hide them.
def plotting_z(z):
"""This function multiplies every element in an array by a provided value
Args:
z (ndarray): neural activity over time, shape (T, ) where T is number of timesteps
"""
fig, ax = plt.subplots()
ax.plot(z)
ax.set(xlabel="Time (s)", ylabel="Z", title="Neural activity over time")
Helper functions#
# @title Helper functions
# If any helper functions you want to hide for clarity (that has been seen before
# or is simple/uniformative), add here
# If helper code depends on libraries that aren't used elsewhere,
# import those libaries here, rather than in the main import cell
def global_mean(ds: xr.Dataset) -> xr.Dataset:
"""Global average, weighted by the cell area"""
return ds.weighted(ds.areacello.fillna(0)).mean(["x", "y"], keep_attrs=True)
# Calculate anomaly to reference period
def datatree_anomaly(dt):
dt_out = DataTree()
for model, subtree in dt.items():
# for the coding exercise, ellipses will go after sel on the following line
ref = dt[model]["historical"].ds.sel(time=slice("1950", "1980")).mean()
dt_out[model] = subtree - ref
return dt_out
def plot_historical_ssp126_combined(dt):
for model in dt.keys():
datasets = []
for experiment in ["historical", "ssp126"]:
datasets.append(dt[model][experiment].ds.tos)
da_combined = xr.concat(datasets, dim="time")
Video 1: Video 1 Name#
# @title Video 1: Video 1 Name
# Tech team will add code to format and display the video
Tutorial 5: Internal climate variability & single-model ensembles#
One of the CMIP6 models we are using in today’s tutorials, MPI-ESM1-2-LR is part of single-model ensemble, where its modelling center carried out multiple simulations from that model for each CMIP6 experiment.
Let’s take advantage of this to quantify the internal variability of this model’s simulated climate, and compare the uncertainty due to this variability to the multi-model uncertainty we diagnosed in the previous tutorial.
###Coding Exercise 5.1: Load and plot timeseries of 5 simulation single-model ensemble for the historical period and the SSP1-2.6 projection
Complete the following code to:
Load 5 different realizations of the MPI-ESM1-2-LR experiments(r1i1p1f1 through r5i1p1f1). This means they were each initialized using a different time-snapshot of the base simulation.
Plot the historical and SSP1-2.6 experiment data for each realization, using a distinct color for each realization, but keeping that color the same across the historical and future period for a given realization.
If the following cell crashes, run the cell a second time#
#################################################
## TODO for students: details of what they should do ##
# Fill out function and remove
raise NotImplementedError("Student exercise: Load single-model ensemble datasets and plot hisotorical/ssp126 timeseries for each ensemble member")
#################################################
%matplotlib inline
col = intake.open_esm_datastore("https://storage.googleapis.com/cmip6/pangeo-cmip6.json") # open an intake catalog containing the Pangeo CMIP cloud data
cat_ensemble = col.search(
source_id=['MPI-ESM1-2-LR'],
variable_id='tos',
table_id='Omon',
# Select the 5 ensemble members described above
member_id=...,
grid_label='gn',
experiment_id = ['historical', 'ssp126', 'ssp585'],
require_all_on = ['source_id', 'member_id']
)
# convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
kwargs = dict(
preprocess=combined_preprocessing, #apply xMIP fixes to each dataset
xarray_open_kwargs=dict(use_cftime=True), #ensure all datasets use the same time index
storage_options={'token':'anon'} #anonymous/public authentication to google cloud storage
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_ensemble.esmcat.aggregation_control.groupby_attrs = ['source_id', 'experiment_id']
dt_ensemble = cat_ensemble.to_datatree(**kwargs)
# add the area (we can reuse the area from before, since for a given model the horizontal are does not vary between members)
dt_ensemble_with_area = DataTree()
for model,subtree in dt_ensemble.items():
metric = dt_area['MPI-ESM1-2-LR']['historical'].ds['areacello'].squeeze()
dt_ensemble_with_area[model] = subtree.map_over_subtree(_parse_metric,metric)
# global average
# average every dataset in the tree globally
dt_ensemble_gm = dt_ensemble_with_area.map_over_subtree(global_mean)
# calculate anomaly
dt_ensemble_gm_anomaly = datatree_anomaly(dt_ensemble_gm)
def plot_historical_ssp126_ensemble_combined(dt):
for model in dt.keys():
datasets = []
for experiment in ['historical', 'ssp126']:
datasets.append(dt[model][experiment].ds.tos)
# Concatenate the historical and ssp126 timeseries for each ensemble member
da_combined = ...
# plot annual averages
da_combined.coarsen(time=12).mean().plot(hue='member_id')
plt.figure()
plot_historical_ssp126_ensemble_combined(dt_ensemble_gm_anomaly)
plt.title('Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble')
plt.ylabel('Global Mean SST Anomaly [$^\circ$C]')
plt.xlabel('Year')
plt.legend()
# to_remove solution
%matplotlib inline
col = intake.open_esm_datastore(
"https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
) # open an intake catalog containing the Pangeo CMIP cloud data
cat_ensemble = col.search(
source_id=["MPI-ESM1-2-LR"],
variable_id="tos",
table_id="Omon",
# Select the 5 ensemble members described above
member_id=["r1i1p1f1", "r2i1p1f1", "r3i1p1f1", "r4i1p1f1", "r5i1p1f1"],
grid_label="gn",
experiment_id=["historical", "ssp126", "ssp585"],
require_all_on=["source_id", "member_id"],
)
# convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
kwargs = dict(
preprocess=combined_preprocessing, # apply xMIP fixes to each dataset
xarray_open_kwargs=dict(
use_cftime=True
), # ensure all datasets use the same time index
storage_options={
"token": "anon"
}, # anonymous/public authentication to google cloud storage
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_ensemble.esmcat.aggregation_control.groupby_attrs = ["source_id", "experiment_id"]
dt_ensemble = cat_ensemble.to_datatree(**kwargs)
cat_area = col.search(
source_id=["MPI-ESM1-2-LR"],
variable_id="areacello", # for the coding exercise, ellipses will go after the equals on this line
member_id="r1i1p1f1",
table_id="Ofx", # for the coding exercise, ellipses will go after the equals on this line
grid_label="gn",
experiment_id=[
"historical"
], # for the coding exercise, ellipses will go after the equals on this line
require_all_on=["source_id"],
)
# hopefully we can implement https://github.com/intake/intake-esm/issues/562 before the
# actual tutorial, so this would be a lot cleaner
cat_area.esmcat.aggregation_control.groupby_attrs = ["source_id", "experiment_id"]
dt_area = cat_area.to_datatree(**kwargs)
# add the area (we can reuse the area from before, since for a given model the horizontal are does not vary between members)
dt_ensemble_with_area = DataTree()
for model, subtree in dt_ensemble.items():
metric = dt_area["MPI-ESM1-2-LR"]["historical"].ds["areacello"].squeeze()
dt_ensemble_with_area[model] = subtree.map_over_subtree(_parse_metric, metric)
# global average
# average every dataset in the tree globally
dt_ensemble_gm = dt_ensemble_with_area.map_over_subtree(global_mean)
# calculate anomaly
dt_ensemble_gm_anomaly = datatree_anomaly(dt_ensemble_gm)
def plot_historical_ssp126_ensemble_combined(dt):
for model in dt.keys():
datasets = []
for experiment in ["historical", "ssp126"]:
datasets.append(dt[model][experiment].ds.tos)
# Concatenate the historical and ssp126 timeseries for each ensemble member
da_combined = xr.concat(datasets, dim="time")
# plot annual averages
da_combined.coarsen(time=12).mean().plot(hue="member_id")
with plt.xkcd():
plt.figure()
plot_historical_ssp126_ensemble_combined(dt_ensemble_gm_anomaly)
plt.title(
"Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble"
)
plt.ylabel("Global Mean SST Anomaly [$^\circ$C]")
plt.xlabel("Year")
plt.legend()
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Cell In[7], line 4
1 # to_remove solution
2 get_ipython().run_line_magic('matplotlib', 'inline')
----> 4 col = intake.open_esm_datastore(
5 "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
6 ) # open an intake catalog containing the Pangeo CMIP cloud data
8 cat_ensemble = col.search(
9 source_id=["MPI-ESM1-2-LR"],
10 variable_id="tos",
(...)
16 require_all_on=["source_id", "member_id"],
17 )
19 # convert the sub-catalog into a datatree object, by opening each dataset into an xarray.Dataset (without loading the data)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/core.py:107, in esm_datastore.__init__(self, obj, progressbar, sep, registry, read_csv_kwargs, columns_with_iterables, storage_options, **intake_kwargs)
105 self.esmcat = ESMCatalogModel.from_dict(obj)
106 else:
--> 107 self.esmcat = ESMCatalogModel.load(
108 obj, storage_options=self.storage_options, read_csv_kwargs=read_csv_kwargs
109 )
111 self.derivedcat = registry or default_registry
112 self._entries = {}
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/intake_esm/cat.py:264, in ESMCatalogModel.load(cls, json_file, storage_options, read_csv_kwargs)
262 csv_path = f'{os.path.dirname(_mapper.root)}/{cat.catalog_file}'
263 cat.catalog_file = csv_path
--> 264 df = pd.read_csv(
265 cat.catalog_file,
266 storage_options=storage_options,
267 **read_csv_kwargs,
268 )
269 else:
270 df = pd.DataFrame(cat.catalog_dict)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:912, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
899 kwds_defaults = _refine_defaults_read(
900 dialect,
901 delimiter,
(...)
908 dtype_backend=dtype_backend,
909 )
910 kwds.update(kwds_defaults)
--> 912 return _read(filepath_or_buffer, kwds)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:577, in _read(filepath_or_buffer, kwds)
574 _validate_names(kwds.get("names", None))
576 # Create the parser.
--> 577 parser = TextFileReader(filepath_or_buffer, **kwds)
579 if chunksize or iterator:
580 return parser
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1407, in TextFileReader.__init__(self, f, engine, **kwds)
1404 self.options["has_index_names"] = kwds["has_index_names"]
1406 self.handles: IOHandles | None = None
-> 1407 self._engine = self._make_engine(f, self.engine)
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/parsers/readers.py:1661, in TextFileReader._make_engine(self, f, engine)
1659 if "b" not in mode:
1660 mode += "b"
-> 1661 self.handles = get_handle(
1662 f,
1663 mode,
1664 encoding=self.options.get("encoding", None),
1665 compression=self.options.get("compression", None),
1666 memory_map=self.options.get("memory_map", False),
1667 is_text=is_text,
1668 errors=self.options.get("encoding_errors", "strict"),
1669 storage_options=self.options.get("storage_options", None),
1670 )
1671 assert self.handles is not None
1672 f = self.handles.handle
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:716, in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)
713 codecs.lookup_error(errors)
715 # open URLs
--> 716 ioargs = _get_filepath_or_buffer(
717 path_or_buf,
718 encoding=encoding,
719 compression=compression,
720 mode=mode,
721 storage_options=storage_options,
722 )
724 handle = ioargs.filepath_or_buffer
725 handles: list[BaseBuffer]
File ~/miniconda3/envs/climatematch/lib/python3.10/site-packages/pandas/io/common.py:373, in _get_filepath_or_buffer(filepath_or_buffer, encoding, compression, mode, storage_options)
370 if content_encoding == "gzip":
371 # Override compression based on Content-Encoding header
372 compression = {"method": "gzip"}
--> 373 reader = BytesIO(req.read())
374 return IOArgs(
375 filepath_or_buffer=reader,
376 encoding=encoding,
(...)
379 mode=fsspec_mode,
380 )
382 if is_fsspec_url(filepath_or_buffer):
File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:482, in HTTPResponse.read(self, amt)
480 else:
481 try:
--> 482 s = self._safe_read(self.length)
483 except IncompleteRead:
484 self._close_conn()
File ~/miniconda3/envs/climatematch/lib/python3.10/http/client.py:631, in HTTPResponse._safe_read(self, amt)
624 def _safe_read(self, amt):
625 """Read the number of bytes requested.
626
627 This function should be used when <amt> bytes "should" be present for
628 reading. If the bytes are truly not available (due to EOF), then the
629 IncompleteRead exception can be used to detect the problem.
630 """
--> 631 data = self.fp.read(amt)
632 if len(data) < amt:
633 raise IncompleteRead(data, amt-len(data))
File ~/miniconda3/envs/climatematch/lib/python3.10/socket.py:705, in SocketIO.readinto(self, b)
703 while True:
704 try:
--> 705 return self._sock.recv_into(b)
706 except timeout:
707 self._timeout_occurred = True
File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1274, in SSLSocket.recv_into(self, buffer, nbytes, flags)
1270 if flags != 0:
1271 raise ValueError(
1272 "non-zero flags not allowed in calls to recv_into() on %s" %
1273 self.__class__)
-> 1274 return self.read(nbytes, buffer)
1275 else:
1276 return super().recv_into(buffer, nbytes, flags)
File ~/miniconda3/envs/climatematch/lib/python3.10/ssl.py:1130, in SSLSocket.read(self, len, buffer)
1128 try:
1129 if buffer is not None:
-> 1130 return self._sslobj.read(len, buffer)
1131 else:
1132 return self._sslobj.read(len)
KeyboardInterrupt:
###Coding Exercise 5.2: Create a single-model ensemble data with IPCC uncertainty bands
Complete the following code to:
Repeat the final figure of the last tutorial, except now display means and uncertainty bands of the single-model ensemble that you just loaded, rather than the multi-model ensemble analyzed in the previous tutorial
#################################################
## TODO for students: details of what they should do ##
# Fill out function and remove
raise NotImplementedError("Student exercise: Repeat the prevous figure but now showing uncertainty bands rather than indivudal timeseries")
#################################################
for experiment, color in zip(['historical', 'ssp126', 'ssp585'], ['C0', 'C1', 'C2']):
da = dt_ensemble_gm_anomaly['MPI-ESM1-2-LR'][experiment].ds.tos.coarsen(time=12).mean().load()
# Shading representing spread between members
x = da.time.data
# Diagnose the lower range of the likely bounds
da_lower = ...
# Diagnose the upper range of the likely bounds
da_upper = ...
plt.fill_between(x, da_lower, da_upper, alpha=0.5, color=color)
# Calculate the mean across ensemble members
da.mean(...).plot(color=color, label=experiment,)
plt.title('Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble')
plt.ylabel('Global Mean SST Anomaly [$^\circ$C]')
plt.xlabel('Year')
plt.legend()
# to_remove solution
with plt.xkcd():
for experiment, color in zip(
["historical", "ssp126", "ssp585"], ["C0", "C1", "C2"]
):
da = (
dt_ensemble_gm_anomaly["MPI-ESM1-2-LR"][experiment]
.ds.tos.coarsen(time=12)
.mean()
.load()
)
# Shading representing spread between members
x = da.time.data
# Diagnose the lower range of the likely bounds
da_lower = da.squeeze().quantile(0.17, dim="member_id")
# Diagnose the upper range of the likely bounds
da_upper = da.squeeze().quantile(0.83, dim="member_id")
plt.fill_between(x, da_lower, da_upper, alpha=0.5, color=color)
# Calculate the mean across ensemble members
da.mean("member_id").plot(
color=color,
label=experiment,
)
plt.title(
"Global Mean SST Anomaly in SSP1-2.6 from a 5-member single-model ensemble"
)
plt.ylabel("Global Mean SST Anomaly [$^\circ$C]")
plt.xlabel("Year")
plt.legend()
Post-figure questions#
Is there anything in this figure that is interesting to you?
How does this figure compare to the multi-model ensemble figure from the previous tutorial? Can you interpret differences using the science we have discussed today?